

JP. SURSOCK, Ph.D.

14 JUNE 2019

BEIRUT, LEBANON

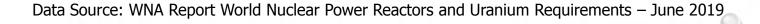
Nuclear Energy Density

1 UO₂ Pellet (7 g)

850 Kg of coal

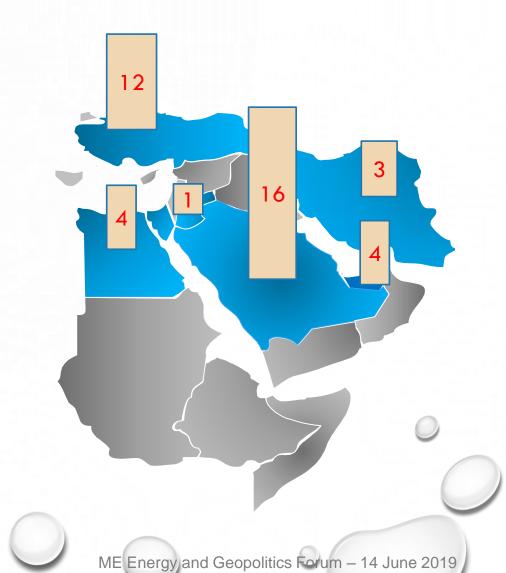
150 Gallons of oil

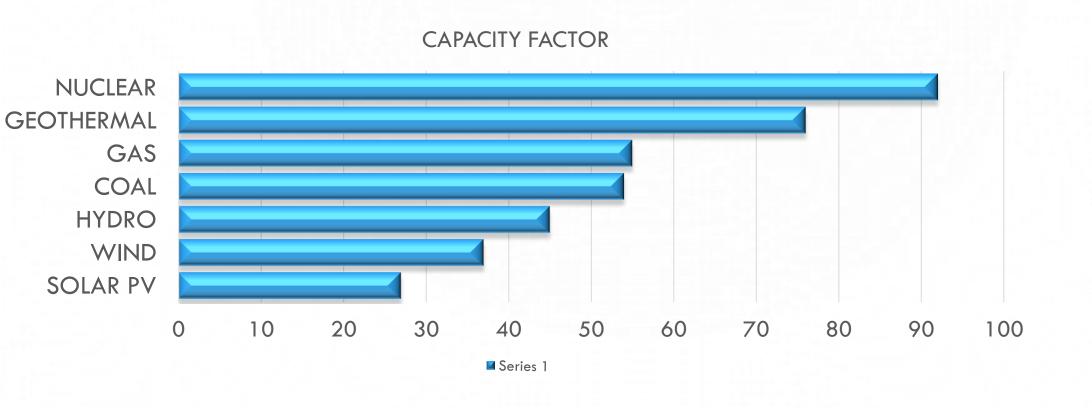
17,000 cubic feet of NG



Nuclear Power in a Nutshell

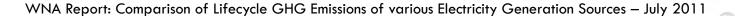
- 450 operating reactors (401 GWe)
- 56 reactors under construction (61 GWe))
- 111 reactors planned (122 GWe)
- 10% of world's electricity production in 2018 (2,563 TWh)
- Nuclear Fuel Requirements: 65,000 T/yr. of Uranium (RAR= 5.3 MT @130 \$/Kg)
- By 2035: 140 reactors closing 224 reactors coming on line


Barakah Nuclear Power Plant



Nuclear Power Projects in the ME

	Operating		Under Construction		Planned		Proposed	
	No	Mwe	No	Mwe	No	Mwe	No	Mwe
Egypt	0		0		4	4,800	0	
Jordan	0		0		0		1	1,000
Saudi Arabia	0		0		0		16	17,000
UAE	0		4	5,600	0		0	
Turkey	0		1	1,200	3	3,600	8	9,500
TOTAL	0	0	5	6,800	7	8,400	25	27,500


GENERATION CAPACITY FACTOR IN THE US (2017)

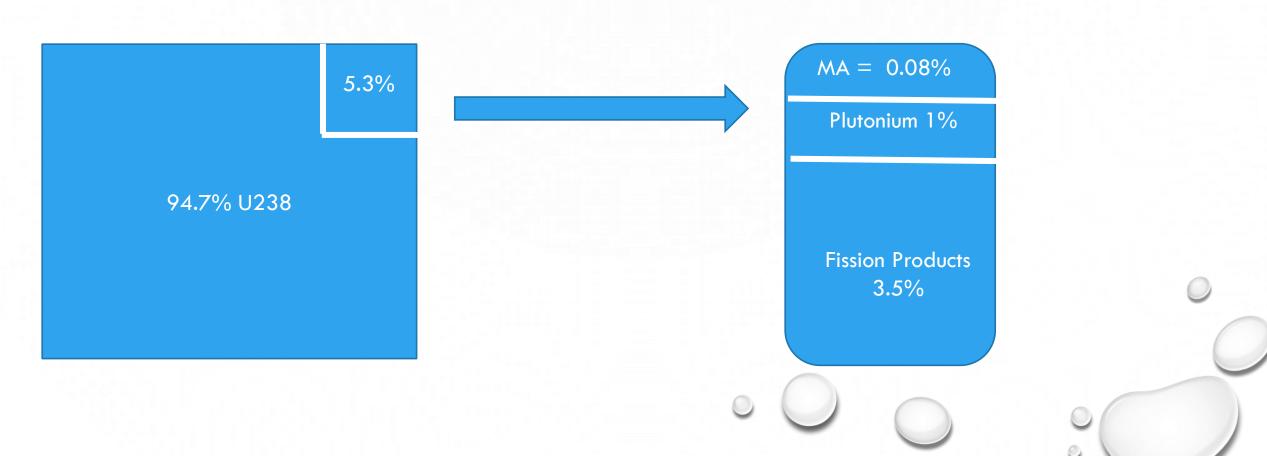
Greenhouse Gas Emissions and Nuclear Power

longo III. de como IIII. I de de de de de de de com				
	Average Lifecycle GHG Emissions	Emissions for 2,563 TWh		
	CITO ETITISSIOTIS			
	(T/GWh)	Million T of CO2		
Lignite	1054	2,701		
Coal	888	2,276		
Oil	733	1,879		
Natural Gas	499	1,278		
Solar PV	85	218		
Nuclear	29	74		
Hydroelectric	26	67		
Wind	26	67		

Costs and Commitments

- Building an infrastructure
- High front-end and back-end costs
- Long construction time (10-15 years)
- Long commitment to technology (>100 years)
- Strong commitment to the culture of nuclear safety
- Ensuring physical plant protection and cybersecurity
- Managing used fuel and other radioactive waste

Commitment


- Technical support for regulatory authorities
- Radioactive waste treatment and disposal
- Applied R&D, pilot evaluations and special investigations
- Training Institute: for skills and knowledge
- Operational feedback: Data analysis and lessons learned exchange.
- Quality Assurance Program
- Insurance Policies (against nuclear accidents)

Background slides

Used Fuel: Waste Characterization

Nuclear Waste

For a typical 1000 Mwe reactor:

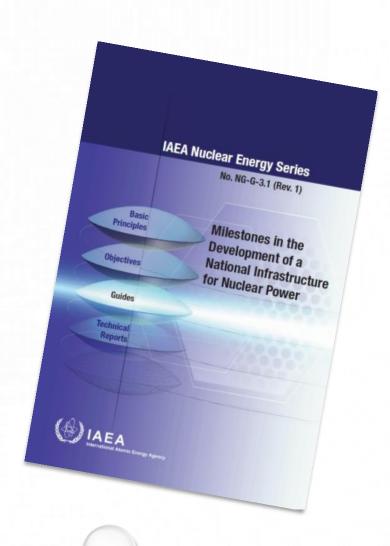
- Electricity Production = 8 TWh
- 800,000 to 1,000,000 people
- Low level waste : 250 450 m³/yr.
- High Level waste: 12 20 m³/yr
- ☐ High Level Waste/cap. = 12 25 cm³/yr. (the size of a cigarette)
- □ Low Level Waste/cap. = $250 560 \text{ cm}^3/\text{yr}$ (the size of two cigarette boxes)

Historical Background

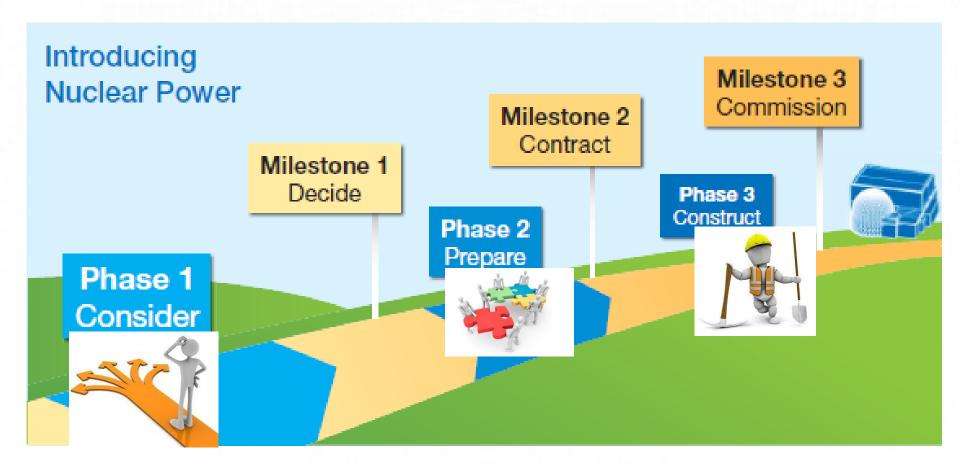
Gulf Cooperation Council

- 2006: GCC commissioning study on the peaceful use of NP
- 2007: the six States agreed to cooperate on a regional nuclear power and desalination program
- 2008: GCC appoints ambassador to IAEA (the six nations are all signatories of the NPT since 2003)
- 2008: UAE publishes comprehensive policy on nuclear energy
- 2012: UAE starts construction of 4 units (Barakah)

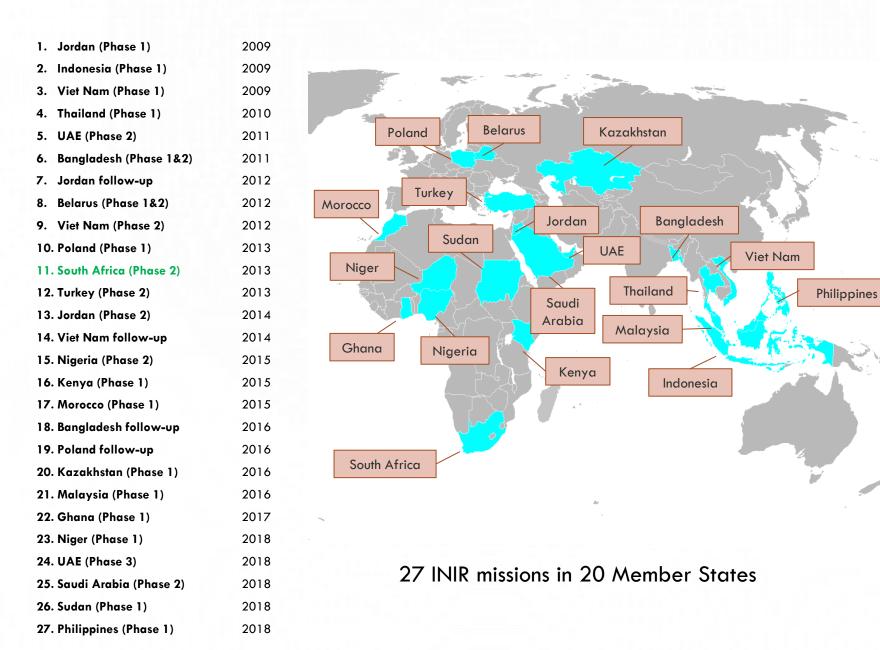
Egypt


- 1955: Egyptian Atomic Energy Authority is set up
- 1961: vintage 2 MWt research reactor at inshas
- 1983: El Dabaa site selected but later dropped after Chernobyl accident (1986)
- Several false starts between 1976 and 2015
- 1997:(ETRR-2: 22 MWt research reactor from Argentina starts operation
- 2015: Intergovernmental agreement signed between Egypt and Russia for construction of 4 units
- 2019 (April): site approval permit for El Dabaa

- Phased
- Comprehensive
- Integrated



The Milestones Approach is holistic and considers 19 specific infrastructure issues. Issued in 2007; updated in 2015



IAEA

IAEA Milestones Approach: Infrastructure Development Phases

INIR Missions 2009-2018

